
produce nonlinear distortion of a small-amplitude harmonic wave. However, one should take 
special care here, because the formal use of Eq. (8) (quadratic approximation)without taking 
the smallness of IYI into account can result in significant distortions of the solution. For 
example, a false soliton is exhibited when H=3[D/(I + y)]3, but in thiscaseY2 =2D/(I+Y)~ 
(2/3)(ci/c2) 2 ~ i and Eq. (8) becomes invalid. In conclusion, explaining the nature of,he 
solutions obtained, we note that the excess pressure p on the right-hand side of Eq. (2) can 
be expressed with the help of the equation of state in the formof the equationp =ponVc2co2/ 
[(I - z)c 2 - I], which results from Eq. (i) for the case of a stationary wave. As is evi- 
dent, the sign of p/V varies as a function of the relation between c 2 and ci =, and when c 2 > 
c~ =, the excess pressure p increases as V increases, while when c 2 < cI 2, a negative valueof 
p (the pressure decreases) corresponds to an increase in V. The first case corresponds to 
pulsations of the bubble at frequencies higher than resonance, when the bubble represents a 
massive impedance and the liquid is elastic; at the same time, an increase in the volume of 
the bubble is accompanied by compression of the elastic element (a pressure increase). In the 

2 opposite case, when c 2 < c~ , the bubble is the elastic element, and its increase implies a 
dilatation of the elastic element (i.e., a pressure decrease). We note that the elasticity 
of the gas in the bubble, which is described by the first term on the right-hand side of 
Eq. (2), always opposes the expansion, i.e., this term is always negative upon an increase 

2 in V. Therefore, when c 2 < c~ in the case (--p) > 0, the terms on the right-hand side of 
the equation have unlike signs and compensation of them is possible, which corresponds to the 
formation of a soliton. 
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ASYMPTOTIC ANALYSIS OF THE PROBLEM OF IGNITION OF REACTIVE MATERIAL 

BY A HEATED SURFACE 

R. S. Burkina and V. N. Vilyunov UDC 536.46 

INTRODUCTION 

Due to the Arrhenius dependence of the rate of a chemical reaction on temperature in the 
statement of many problems of macrokinetics, several relaxation lengths (usually two) are 
present whose ratio forms a small parameter (for example, the ratio of the chemical reaction 
and heating zones). Problems of this type pertain to special perturbation problems, for whose 
solution the method of spliced asymptotic expansions (SAE) is most suitable. The solution 
of a number of steady-state problems of slow burning and detonation (see [!] and the bibliog- 
raphy in it) has been found with the help of SAE. The attempt to apply SAE to problems of 
macrokinetics formulated within the framework of partial differential equations* is still 
very limited [1-3]. Upper and lower limits are found in this paper for the heating time in 

*V. S. Berman, "Some problems in the theory of the propagation of a zone with exothermic 
chemical reactions in gaseous and condensed media." Dissertation in Competition for the Sci- 
entific degree of Candidate of Physico-Mathematical Sciences, Institute of the Problems of 
Mechanics, Academy of Sciences of the USSR, Moscow (1974). 

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, 
pp. 96-102, November-December, 1976. Original article submitted December 2, 1975n 
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the thermal theory of ignition by a heated surface; a comparison is given of the analytic 
formulas with a numerical calculation by a computer; the asymptotic nature of B. Zel'dovich's 
formula [4] is established; the divergence of the results (in the case in which the tempera- 
ture head eo tends to infinity) is shown [5, 6]. 

i. Qualitative Estimates. For the assumptions usually used in ignition theory, the 
nonlinear thermal conductivity equation 

OT/Ot =•  2 +(Qz /c )  e x p ( - - E / R T ) ,  t>0, 0<r<~ (I.i) 

with the conditions 

r(r ,  O) = T_, T(0, t) = T+, aT(cr t)/ar = 0 ( 1 . 2 )  

i s  t h e  r e f e r e n c e .  

In agreement with [4], the heating time to is defined as the time to reach thermal equi- 
librium between the reacting medium and the heated surface: 

aT(O, to)/ar = O. 

The ignition time t I is comprised of the heating time and the chemical induction time: 

t I = t o -~- tin 

and 

t in<<to, ~ "~to 

only in case of large Oo : E(T+ -- T_)/RT+ 2. 

The following notation was employed in the exposition above: T is the temperature, ~ = 
X/cp is the thermal diffusivity, X is the thermal conductivity, c is the heat capacity, p is 
the density, Q is the thermal effect, z is the preexponent, E is the activation energy, r is 
the spatial coordinate, t is the time, T_ is the initial temperature, and T+ is the tempera- 
ture of the hot surface. 

Let us citesome qualitative estimates which reveal the characteristic scales both for 
the dependent and the independent variables. 

If T~ ~ T_, and E >> RT+, then the contribution of the nonlinear term in (i.I) is signif- 
icant only in the vicinity of r = 0, when T lies in the interval T+ -- RT+2/E ~T~-~T+. There- 
fore, it is possible to distinguish two spatial regions of the solution: the chemical width 
rch , where heat generation is significant, and the thermal width rq, where the reaction is 

practically inactive. 

Writing the balance equation of N. N. Semenov for the reaction zone, we obtain 

pQZrch exp (--E/RT+) = q,, (1.3) 

where q, is the specific thermal flux at the coupling boundary of the reaction and heating 

zones. 

The order of magnitude of the quantities rch and rq is estimated in the following way: 

rch N ~ R T ~ / E q , ,  rq ~ ~(T+ - -  T _ ) / q , ,  ( 1 . 4 )  

so that the ratio 

rc~lrq = O(s),  e = R T $ / E ( T +  - -  T _ )  = l /O o << 1 ( 1 . 5 )  

is a small parameter of the original problem (i.i) and (1.2). In agreement with dimensional- 

ity considerations, 

r q ~-, V'~'t o. (1.6) 
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Equations (1.3)-(1.6) lead to the obvious estimates 

E (r+ -- T_)2 c exp ( E / B T + ) ;  
t o N T I T 2 Q z  

[ Z E(r+--T__)~ ]~/2 
rq ~-. p--~- RT~ exp (E/RT+) ; 

x RT~ l~/2 
rch  ~ ~ - ~ e x p ( E / T I T + ) ]  ; 

e ( r + - r _ )  i - u 2  

(1.7) 

Estimate (1.7) agrees with the results obtained in [4, 7] to an accuracy of a constant 
factor. 

It follows from a qualitative analysis of the problem that the difference T+-- T_ is the 
temperature scale in the exterior region of the solution and rq is the distance scale. In the 
interior region the characteristic scales are RT+a/E and rch , respectively. The time scale 
for both regions is equal to to. 

2. Asymptotic Analysis of the Solution. The initial statement of the problem in the 
exterior variables is written in the form 

Ou/O,~ = O"u/Ox 2 - -  (t/e) exp [ - - ( t / e ) u / ( l  - -  o u )  l; 
, ( .r ,  0)  = 1, u(0 ,  T) = 0,  u ( ~ ,  ~) = t, 

+t = ( T +  - -  T ) / ( T +  - -  T _ ) ,  x = r / r q ,  T = t / t o ,  

O < c~ = I - -  T _ / T +  < t .  

In the interior variables we have 

(2 .1 )  

e~-OU/OT --- O"-U/OX"- - .  exp [U/(1 @ 13U)]; (2.2) 

U ( X ,  0) = --t/e, U(0, ~) = 0, U(cr -c) = --l/e, (2.3)  

U = E ( T  - -  T + ) / R T + ,  X = , ' / rch ,  x = t / t o ,  ~ = B T + / E  <<t. 

Since the small parameter E in Eq. (2.1) has entered into the exponent, it is possible 
to neglect nonlinearity in the exterior region to any order of accuracy with respect to r 
Therefore, the solution of the exterior problem which satisfies the conditions u(x, 0) = !, 
and u(~, T) = 1 is of the form 

Z 

z+ = A q-(I -- A)(D(x/2 VT), q)(z) = ~ !+ exp (--g2)@. (2.4) 

Here the parameter A is determined by splicing. 

The solution of Eq. (2.3) in the interior region is sought in the form of a series 

u(x,  -r, e) : r~(~)u~(x, "0 + ~(~)u2(x, ~) +..., (2.5) 

where ~n(e) is an asymptotic sequence, Un+,/~n § O, e § O. Substituting (2.5) into (2.2) 
and (2.3), we obtain ~1(~) = 1 and ~2(e) = ~=, and the interior problem reduces to the equa- 
tion 

O~U~/OX 2 @ exp U, = 0. (2.6) 

with an accuracy out to 0(r 2) when B ~ I. 

All further discussion is limited by the error 0(r therefore, the equations for U2, 
U3,... are not written out. The solution of (2.6) is of the form 
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UI(X, "0 = In  2a  _--4_- V-2aX + 2b - - 2  In [1 + exp  (-4-]/-2"~X + 2b) l ,  

where a and b are functions of the time T. The nearer boundary condition gives the value 
a = cosh2b. It is sufficient to know the temperature field distribution at the instant To 
in order to reply to a particular question. Therefore, instead of a (T) and b(T), which are 
determined by splicing in the general case and do not contradict the divergence of the ini- 
tial conditions, we will take their values at the instant To. 

The solution of (2.6) which satisfies the nearer boundary condition Uz(0, ~) = 0 and the 
thermal equilibrium condition ~UI(0, ro)/~X = 0, is of the form 

Uz = 2 1 n 2 - V 2 X  = 2 1 n  [l  - i - e x p  ( - - V 2 X ) I .  

T h e  t i m e  t o  e s t a b l i s h  t h e r m a l  e q u i l i b r i u m  To i s  s o u g h t  i n  t h e  f o r m  o f  a s e r i e s  

(2.7) 

% = DoQo(e) -I- DIQ~(8) -I- D.,.Q2(e) -i-..., ( 2 . 8 )  

where Qn(r is an asymptotic sequence, Qn+ z/Qn § 0,and r § 0. The coefficients D n and the 
asymptotic sequence are found as a result of splicing the interior (2.7) and exterior (2.4) 
expansions. The rule of boundary splicing consists of the requirement of identical asymptot- 
ic behavior of the interior and exterior expansions written in the very same variables, i.e., 

l i m  u - -  ~ I U ,  I : : 0 ,  ( 2 . 9 )  
~ o  V (e) 

where as r § 0 the order of magnitude of y is chosen to be equal to the order of magnitude 
of the spliced term. 

After substitution of (2.8) into (2.4) and the expansion of r into a series in the 
vicinity of z = 0, we arrive for small x at the expansion 

tt = A -~- ~ 2 ],/D----~o t2DoQo ~- t60D2Q 2 " "~- "'" x - -  =~o/'rj3/2'~3/2",~0 4D~ + 32DoQ022 -4- ... x Qz - -  

D , ( l . x ~  x4 ) 3 D ~ (  5x 2 7x4 
Ar)3/2r 4DoQ o -~ 3202Q2 -Jr ... xQ2-~anr)512~5/2 t t2DoQo ~ "-------~2 ~uo '~0 . . . .  0 ~0 96DoQo 

+...)xQ2+ .... ( 2 . 1 0 )  

The first term of the expansion (2.8) is determined by the usual means of splicing: the 
substitution of (2.10) and (2.7) into (2.9) in the case y(r = i gives 

"A = 0,  Do = l / 2 n ,  Qo(e) = t .  

The standard splicing procedure does not take place for the determination of the suc- 
ceeding terms of (2.8), since it is necessary here to know the rate at which the exterior 
variable x tends to zero [with respect to the appropriate terms of the asymptotic sequence 
Qn(r It has not proven possible in the present approach to find an accurate value of the 
rate at which x tends to zero; however, it appears possible to obtain useful estimates. 

The splicing condition is satisfied in two cases: 

x~ --~ o (A) 

Ql(e)/x ~ --~ 1, (B) 

e --+0.  

Since To is determined by an asymptotic series constructed on the sequence Qn(r then when 
Qz(e) >> x 2, we will have in case A the upper, and when Qz(r % x2, in case B the lower limit 

to the time To. 

The case Q,(e)/x 2 + 0 is not possible, since it is impossible to satisfy the condition 

(2.9). 

We will derive formulas for the upper limit to the time To. Substituting (2.7) and 
(2.10) into (2.9) and setting y (r = e with satisfaction of (A) taken into account, we will 

have 
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xQi(e) = e, D, = ]Z~-In 2/u, Ql(e) > e 2/3. ( 2 . 1 1 )  

ble: 
Upon comparison of the subsequent terms of the expansion, three cases are already possi- 

Q~(~)lx~-+ "i ; 
Qi ( e)lx"-+ O, 

which are arranged in the order of decrease of the respective limits of the series (2.8). 

In case (Aa), QI(E) >> g I/= in agreement with (2.11), and we have from (2.9) 

Q2(e) = Q~(e), Do = 3 1 n 2 2 / u  

consequently, one of the upper limits is written in the form 

~o = 1/2~ +- (1 /2  In 2/~) Q~ (e) + (3 In~'2/~)Q~ (e) + ..., 

where E 1/2 << Q l ( e )  << i. 

In case (Ab) , Qi(r = el/= and upon continuation of splicing we find the coefficients 

Q~(e) = e, D 2 = 3 ln"-2/n -- L/6 

(*a): 
(%) 
(A c )  

and the corresponding expansion 

xo + = 1/2~ + ( ] / 2  In 2/~) e~/2 + (3 In 2 2 / n  - -  t /6)  s + . . . .  ( 2 . 1 2 )  

Similarly, in case (Ac) we will have 

Q2 (e) = QF 2 (e) e 2, D2 = --1/6,  e2/3<< Qx (e) << 81/2; 

r o = t /2~ ,-~ ( | / 2 1 n  2/n)Qx(8 ) - -  (1/6)Q2( Q -~- . . . .  

The lower limit of Zo-  is found by successive splicing of (2.9) with the condition that 
case (B) is fulfilled. Leaving out the intermediate steps, we write out the final answer: 

~ ~ -  ----- i /2~-t-(V-21n 2 / ~ - - l / 6 ) e 2 1 a + ( 3 1 n 2 2 / ~ - - ~ / 6 0 )  e ~I3 + . . . .  (2.13) 

TABLE 1 

0o 3 6 10 25 50 I00 300 

x, (Computer) 

x+ (2.12) 

z .  (2.13) 

<3,> (3.1) 
�9 ,~ (3.3) 
"%1 (3.2) 
x.7 (3.4) 

" ~ ,  % 

< x , > .  % 
~,. , % 

x.1 . % 
�9 . 7  , % 

3,7 

3,9 

2,9 

3,4 
3,t 
2,9 
t,4 

6,2 

--21,4 

--7,6 
--14,9 
--22,6 
--6t,3 

t t  

12,1 

8,7 

t0,4 
t0,4 
1t,5 
5,7 

9,7 

2t,3 

-5,8 
-5,1 
4,2 

--47,9 

25,6 

28,7 

20,9 

24,8 
27,1 
31,8 
15,9 

t2,1 

- - t8 ,2  

--3,0 
5,7 

24,34 
--37,8 

t28,8 

t45,8 

113,6 

129,7 
16t,1 
198,9 
99,4 

13,2 

--11,8 

0,6 
2511 
54,5 

--22,8 

464 

523 

430 

476 

628 

796 

398 

12,7 

--7,3 

2,7 

35,4 

71,5 

--14,3 

[744 

L933 

[668 " 

[800 
.%19 
3t83 
1.592 

1o,81 

--4,4 

3.2 I 
44,4 

82,5 I 
--8,8 

14960 

16033 

14634 

15333 

22550 

28648 

14324 

7,17 

--2,2 

2,5 

50,6 
9t,50 

--4,3 
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3. Discussion of the Results. The numerical solution of the problem (2.2) and (2.3) 
was accomplished on an M-220 computer on the basis of an implicit difference scheme with se- 
lection of the optimal Courant number and extrapolation of the calulated values to zero step 
[8]. Comparison of Eqs. (2.12), (2.13), and the numerical calculation of [9] (see the table 
in which the conversion of To to T, = 0o2To is done) shows that satisfactory agreement (with 
an error no worse than 3%) is given over a wide interval of variation of the temperature head 
(10~eo ~300) by the arithmetic mean formed from the upper and lower limits: 

(3.1) 

A comparison of the results obtained by different authors with the numerical calculation 
and the asymptotic Eqs. (2.12), (2.13), and (3.1) is given in Fig. i and Table i: 

curve 1 corresponds to Enig's formula [5], 

�9 ,~ /0~ = 1 /~ ;  

c u r v e  2 c o r r e s p o n d s  t o  G r i s h i n ' s  f o r m u l a  [ 6 ] ,  

(3.2) 

T'z_ O. In i- ~.~ -~ -}- --+ __ , (3.3) 

curve 7 corresponds to Zel'dovich's formula [4], 

x,:lO~ = i / 2 n ;  ( 3 . 4 )  

curves 3-5 correspond to Eqs. (2.12), (2.13), and (3.1), respectively; the results of the 
computer calculation are shown by open circles (curve 6). It is obvious that Eqs. (3.2) and 
(3.3) do not give the correct asymptote, in contrast to (3.4). 

The authors express their gratitude to O. B. Sidonskii and G. V. Aleinikova for supply- 
ing some results of the numerical calculation. 
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USE OF ELECTRIC EXPLOSION OF WIRES IN A HIGH-PRESSURE GAS TO BREAK A CURRENT CIRCUIT 

G. P. Glazunov, V. P. Kantsedal, UDC 537.527.5;533.9.07 
and R. V. Mitin 

The high energy densities stored in the magnetic field of inductive storage devices have 
promising applications in experimental physics. The greatest energy storage levels are 
achieved in superconducting storage facilities and pulsed facilities, operating with explo- 
sive-magnetic generators (currents up to 3"108 A) [i]. 

To use the energy stored in a magnetic field one must cut the current in the storage 
circuit and switch it to the load circuit. One method of doing this is to use a switch based 
on electrical explosion of wires (EEW) [I]. There are several difficulties in creating cur- 
rent cut-off devices of this type: After the electric explosion a column of metal vapor 
forms in which breakdown can occur; then the cut-off process is slowed and the energy-trans- 
fer efficiency is decreased. The problem is that the wire material is instantly vaporized, 
i.e., it is a dielectric subject to stresses arising when the inductive storage device is 
switched to the load. 

As the pressure of the surrounding medium is increased it becomes more difficult to cre- 
ate shunting arcs in EEW devices and to produce conditions for more complete vaporization of 
the wire material. A series of tests has been conducted with different materials in order to 
elucidate the possible use of EEW in a high-pressure gas for current switching. The equip- 
ment contained a high-pressure chamber with inserted electrodes, between which a wire of the 
test material was attached. The chamber was filled with argon at a pressure in the range 
1-750 atm. The wire diameter in the various tests was 0.5-1 mm. A control switch was used 
to discharge a condenser bank into the wire, of capacity 200 ~F, voltage 3-6 kV, circuit in- 
ductance ~ 1 uH, and with length of the first half-period current 50-100 usec. The current and 
the voltage were measured using a shunt and a voltage divider, from which the signals were re- 
corded on a type SI-29 oscilloscope. The results obtained are shown in Table i, where I is 
the wire length; p is the inert gas pressure in the working chamber; Ima x is the maximum cur- 
rent before explosion of the wire; Imax'is the maximum discharge current arising after EEW; 
Uc. b is the voltage on the capacitor bank; and T is the closure time, i.e., the time for the 
current to fall from its maximum value to zero. It can be seen from Table 1 that for a cer- 
tain pressure (different value for the different metals) a closure effect occurs, i.e., after 
the current increases the EEW occurs and the electric circuit is broken. In this case part 
of the stored power remains in the capacitor bank. Of the metals tested, the most suitable 
for current interruption are Li and AI. At a pressure of more than 300 atm, wires of these 

Khar'kov. Translated from Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 102- 
105, November-December, 1976. Original article submitted March 29, 1976. 

I 

This material is pro tec ted  by  copyright  registered in the name o / P l e n u m  Publishing Corporation, 227 West i 7th Street, N e w  York, N. Y. ] 
10011. N o  part o f  this publication may be reproduced, stored in a retrieval system,  or transmitted, in any f o rm  or by  any means, electronic, l 
mechanical, pho tocopy ing ,  microfilming, recording or otherwise, w i thou t  writ ten permission o f  the publisher. A copy o f  this article is | 
available f rom  the publisher f o r  $7.50. _ _ ~  

835 


